Authors: Regazzetti C, Dumas K, Lacas-Gervais S, Pastor F, Peraldi P, Bonnafous S, Dugail I, Le Lay S, Valet P, Le Marchand-Brustel Y, Tran A, Gual P, Tanti JF, Cormont M, Giorgetti-Peraldi S
Endocrinology 2015 Mar;156(3):789-801
PubMed ID: 25521582

Abstract

During obesity, a hypoxic state develops within the adipose tissue, resulting in insulin resistance. To understand the underlying mechanism, we analyzed the involvement of caveolae because they play a crucial role in the activation of insulin receptors. In the present study, we demonstrate that in 3T3-L1 adipocytes, hypoxia induces the disappearance of caveolae and inhibits the expression of Cavin-1 and Cavin-2, two proteins necessary for the formation of caveolae. In mice, hypoxia induced by the ligature of the spermatic artery results in the decrease of cavin-1 and cavin-2 expression in the epididymal adipose tissue. Down-regulation of the expression of cavins in response to hypoxia is dependent on hypoxia-inducible factor-1. Indeed, the inhibition of hypoxia-inducible factor-1 restores the expression of cavins and caveolae formation. Expression of cavins regulates insulin signaling because the silencing of cavin-1 and cavin-2 impairs insulin signaling pathway. In human, cavin-1 and cavin-2 are decreased in the sc adipose tissue of obese diabetic patients compared with lean subjects. Moreover, the expression of cavin-2 correlates negatively with the homeostatic model assessment index of insulin resistance and glycated hemoglobin level. In conclusion, we propose a new mechanism in which hypoxia inhibits cavin-1 and cavin-2 expression, resulting in the disappearance of caveolae. This leads to the inhibition of insulin signaling and the establishment of insulin resistance.