Authors: Anjani K, Lhomme M, Sokolovska N, Poitou C, Aron-Wisnewsky J, Bouillot JL, Lesnik P, Bedossa P, Kontush A, Clement K, Dugail I, Tordjman J
J. Hepatol. 2015 Apr;62(4):905-12
PubMed ID: 25450212

Abstract

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, hepatocyte ballooning with fibrosis in severe cases, and high prevalence in obesity. We aimed at defining NASH signature in morbid obesity by mass spectrometry-based lipidomic analysis.

METHODS: We analyzed systemic blood before and 12 months after bariatric surgery, along with portal blood and adipose tissue lipid efflux collected from obese women at the time of surgery (9 structural classes, 150 species).

RESULTS: Increased concentrations of several glycerophosphocholines (PC), glycerophosphoethanolamines (PE), glycerophosphoinositols (PI), glycerophosphoglycerols (PG), lyso-glycerophosphocholines (LPC), and ceramides (Cer) were detected in systemic circulation of NASH subjects. Post-surgery weight loss (12 months) improved the levels of liver enzymes, as well as several lipids, but most PG and Cer species remained elevated. Analysis of lipids from hepatic portal system at the time of surgery revealed limited lipid alterations compared to systemic circulation, but PG and PE classes were found significantly increased in NASH subjects. We evaluated the contribution of visceral adipose tissue to lipid alterations in portal circulation by measuring adipose tissue lipid efflux ex vivo, and observed only minor alterations in NASH subjects. Interestingly, integration of clinical and lipidomic data (portal and systemic) led us to define a NASH signature in which lipids and clinical parameters are equal contributors.

CONCLUSIONS: Circulatory (portal and systemic) phospholipid profiling and clinical data defines NASH signature in morbid obesity. We report weak contribution of visceral adipose tissue to NASH-related portal lipid alterations, suggesting possible contribution from other organs draining into hepatic portal system.